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Abstract

Background: Sero- prevalence studies often have a problem of missing data. Few studies report the proportion of
missing data and even fewer describe the methods used to adjust the results for missing data. The objective of this
review was to determine the analytical methods used for analysis in HIV surveys with missing data.

Methods: We searched for population, demographic and cross-sectional surveys of HIV published from January
2000 to April 2018 in Pub Med/Medline, Web of Science core collection, Latin American and Caribbean Sciences
Literature, Africa-Wide Information and Scopus, and by reviewing references of included articles. All potential
abstracts were imported into Covidence and abstracts screened by two independent reviewers using pre-specified
criteria. Disagreements were resolved through discussion. A piloted data extraction tool was used to extract data
and assess the risk of bias of the eligible studies. Data were analysed through a quantitative approach; variables
were presented and summarised using figures and tables.

Results: A total of 3426 citations where identified, 194 duplicates removed, 3232 screened and 69 full articles were
obtained. Twenty-four studies were included. The response rate for an HIV test of the included studies ranged from 32 to
96% with the major reason for the missing data being refusal to consent for an HIV test. Complete case analysis was the
primary method of analysis used, multiple imputations 11(46%) was the most advanced method used, followed by the
Heckman’s selection model 9(38%). Single Imputation and Instrumental variables method were used in only two studies
each, with 13(54%) other different methods used in several studies. Forty-two percent of the studies applied more than
two methods in the analysis, with a maximum of 4 methods per study. Only 6(25%) studies conducted a sensitivity
analysis, while 11(46%) studies had a significant change of estimates after adjusting for missing data.

Conclusion: Missing data in survey studies is still a problem in disease estimation. Our review outlined a number of
methods that can be used to adjust for missing data on HIV studies; however, more information and awareness are needed
to allow informed choices on which method to be applied for the estimates to be more reliable and representative.
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Background
Worldwide, the HIV/AIDS epidemic is still a problem. It
is estimated that currently, 37million people are living
with HIV (PLHIV), with 70% of these in sub-Saharan Af-
rica [1]. The estimated HIV prevalence is usually ob-
tained from nationally representative, population studies
such as demographic health surveys (DHS). However,
surveys often have a problem of missing data, which can
be a source of bias and can reduce study precision [2].
Accurate HIV prevalence estimates are important for

monitoring and evaluating the ongoing programs, for
the prevention and treatment of HIV and the allocation
of resources within countries [3]. The available literature
and guidelines on reporting observational studies(ST-
ROBE) suggest that for results to be efficient, the
amount of data missing and methods used for handling
the problem must be reported [4, 5]. The STROBE
guidelines go further and explain the importance of
reporting the reasons for missingness, which may in-
clude unit non-response, where a study participant or
household are missing from the entire study, or item
non-response, where some questions are not responded
to, or wrongly entered in the database. The common
reason for missing data in HIV studies includes the re-
fusal to test or non-response to the survey [3, 6]. How-
ever, few studies report the proportion of missing data
or even fewer describes the methods used to adjust for
missing data [7].
Most of the published articles for estimating the preva-

lence and incidence of any diseases are based only on
the use of complete case data analysis or available case
analysis [8]. A few of the articles describe ad hoc
methods such as the use of dummy variable and mean
imputation for the estimation of disease prevalence and
incidence. And even fewer articles describe more ad-
vanced methods for adjusting for missing data, such as
inverse probability weighting, instrumental variables and
multiple imputations [7, 9].
Many demographic and cross-sectional surveys have

been conducted to estimate HIV prevalence and have
been reported in peer-reviewed journals, but few recog-
nise the bias that could be present from missing data.
Editors and authors need to consider how these esti-
mates have been obtained and how missing data have
been addressed. It is important that advanced methods
to adjust for missing data are incorporated in the ana-
lysis of HIV survey data to reduce the bias in the esti-
mates. Failure to adjust for missing data may result in
biased estimates of parameters of interest and can have a
negative impact on controlling the epidemic [9]..
This study aimed to conduct a review of articles from

HIV surveys with missing data to determine what analyt-
ical methods or techniques have been used during, esti-
mating HIV prevalence. Also, to identify the methods

used for sensitivity analysis to assess the robustness of
the assumptions used.

Methods
Two guidelines were used during the conducting and
reporting this review, the Preferred Reporting Items for
Systematic Reviews and Meta-Analyses (PRISMA) [10]
and Strengthening the Reporting of Observational Stud-
ies in Epidemiology (STROBE) [5].

Eligibility criteria and search strategy
An information specialist searched five different data-
bases on 13th August 2018. The database list included
Medline via PubMed, Web of Science Core Collection,
Latin American and Caribbean Sciences Literature,
Africa-Wide Information and Scopus. (Additional file 1).
Studies published from population surveys, either

demographic or cross-sectional studies from January
2000 to August 2018 on estimating the prevalence of
HIV/AIDS written in English were eligible to be in-
cluded in the review. All articles had to include a state-
ment or paragraph on how missing data or non-
response was handled during analysis in the abstract.

Study selection procedure
All potential studies were imported into Covidence
screened for their titles and abstracts to identify the rele-
vant studies (Covidence systematic review software, Ver-
itas Health Innovation, Melbourne, Australia. Available
at www.covidence.org). Two independent reviewers ap-
plied the pre-specified criteria to select abstracts and to
reject abstracts that are not relevant, with a third re-
viewer acting as a tiebreaker. Full text of all selected ab-
stracts were obtained and assessed against the eligibility
criteria. Disagreements were resolved through discussion
between the two reviewers and the third reviewer.

Data extraction and risk of bias assessment
Before data extraction, all studies were assessed for the
possibility of bias using a tool adapted from Hoy et al.
.2012 [7, 11]. The Hoy tool has been designed to assess
the risk of bias in population-based prevalence studies; it
comprises of 10 domains which allow us to identify the
study included if it has a low or high risk of bias. The
items include a question that assessed the internal valid-
ity on the representativeness of the national or target
population, sampling strategy used, the likelihood of
non-response and question that assessed the external
validity on how data were collected and analysed, reli-
ability and validity of the estimates(Additional file 2).
We used Kappa statistics to assess the agreement be-
tween the two reviewers on the full text studies included.
The values where set as ranges of 0 to 0.20 as slight
agreement; 0.21 to 0.40, fair agreement; 0.41 to 0.60,
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moderate agreement; 0.61 to 0.80, substantial agreement;
and greater than 0.80 almost perfect agreement.
A piloted data extraction form with structured ques-

tions was used to collect data from the included studies
independently by the two reviewers. We collected data
on year of publication, place of study, type of study,
sample size and if adjusted for missing data, how the
outcome of interest was analysed, primary analysis and
methods used to adjust for missing values. Discrepancies
were discussed and resolved; an external reviewer was
invited in if the consensus was not achieved from the
two reviewers. The data extraction tool used is included
as Additional file 3.

Data analysis
The extracted data were analysed through a quantitative
approach. All the variables collected were described and
summarised using flow chart and tables. The character-
istics of individual studies included were described. Pro-
portions of studies that reported missing values and the
methods used to adjust for missing data or selection bias
were summarised in the following way. Methods used
for analysis were also described and, any other studies
that performed sensitivity analyses for any of the
methods were also quantified.

Results
A total of 3426 citations were identified, 194 duplicates
removed, 3232 screened, and 69 full articles obtained.
The excluded abstracts were not surveys, or were not es-
timating HIV prevalence, or did not include any missing
data methods to estimate HIV. Following full-text eligi-
bility assessment, 24 studies were included while 45
studies were excluded due to not being a survey [12],
not measuring HIV prevalence [13], being a methodo-
logical study [8], having no missing data methods used
during analysis [3], duplicates [3] and 1 study where we
could not assess the risk of bias, as it did not show the
adjusted HIV prevalence after using the advanced
methods for missing data. Table 1 shows the details of
the excluded studies and a flow chart of the systematic
review is provided in Fig. 1.

Description of included studies
Out of the24 studies, 12 (50%) were Demographic
Health Survey (DHS) studies [48–60], Seven (29%)
Cross-sectional surveys [52, 61–66], three (13%) popula-
tion surveys [67–69] and 2(8%) a mixture of Demo-
graphic Health Survey and Aids Indicator surveys [50,
70]. These studies were published between 2006 to 2018,
and more than 95% of the studies were done in sub-
Saharan Africa. The age of the participants ranged from
12 to 64 years, with more women than men participants.
Table 2 provides a summary of 10 of the included

studies which used a single, unique source of data, and
did not use DHS data.
Fourteen studies had multiple sources of data that

were analysed. Whereby in other studies datasets were
used more than once. All these studies used DHS data
from different countries in Sub-Saharan Africa. The
most common data set used was from Zambia DHS
(2007) and Zimbabwe DHS (2006). A study by Marino
et al. used more datasets than any other study (28/32)
followed by Hogan et al. (27/32) and Mirsha et al. (14/
32). Table 3 shows the intersection of data usage from
the 14 studies with multiple sources of datasets, includ-
ing DHS data.

Risk of Bias assessment
The overall Cohen’s kappa coefficient statistic for the
two authors screening all the included studies was esti-
mated to be 0.93. We had a higher risk of bias on do-
mains that assessed the internal validity of the studies
compared to domains assessing external validity. Almost
all studies had a higher risk of bias on Domain 4 which
looked on likelihood of non-response (23/24), followed
by Domain 1 which looked on the target population is a
close representation of the national population (10/24)
(Appendix 4). Only one study had a high risk of bias in
terms of domains that looked on external validity (do-
main 8), which asked if the same mode of data collection
was used for all subjects. Additional files 2 and 4 shows
in detail all the domain assessed, and results of the as-
sessment done.

Characteristics of the missing data
Only 21 of the 24 studies reported the response rate for
an HIV test. It ranged from 32 to 96%. All the studies
gave a reason for the missing data reported, major rea-
son being the participant refused to consent to an HIV
test and 8 (33%) studies identified further missing data
from unit-nonresponse Six (25%) studies reported miss-
ing data as a separate outcome, while only 9 (38%) had a
result table comparing the participants with complete
data and the ones with missing data. Table 4 provides a
summary of the mentioned characteristics.

Analytical methods used in the analysis
All the 24 studies included in the analysis used complete
case analysis method as their primary method of ana-
lysis. Multiple imputations 11(46%) was the most ad-
vanced method used to adjust for missing data followed
by the Heckman’s selection model 9(38%). Single Imput-
ation and Instrumental variables method were used in
only two studies each, with 13(54%) other different
methods used in several studies. Ten studies (42%) ap-
plied more than two methods in the analysis, with a
maximum of 4 methods in two studies. Table 5
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Table 1 Excluded studies and reasons for exclusion

Reference Reason for exclusion n (%)

Arpino 2014, Barbosa 2002, Blum 2010, Dagne 2015, DiRienzo 2009, Guan 2017, Huang 2012,
Kenward 2001, Nyirenda 2010, Obare 2010, Patrician 2002, Scharfstein 2003, Sun 2018,
Tian 2007 [12–24].

Not a survey 14 (31.1)

Bärnighausen 2012, Grassly 2004, Hlalele 2008, Kranzer 2008, Liu Y 2015, Liu S 2015,
Mistry 2008, Nelwamondo 2007, Pantanowitz 2009a, Pantanowitz 2009b, Rosinska 2013,
Schomaker 2018, Shah 2014, Westreich 2012, Wirth 2010, Wu 2001 [25–39].

Do not measure HIV prevalence 16 (35.6)

Boerma 2003, Brookmeyer 2010, Clark 2012; Garcia-Calleja 2006, Gouws 2008, Hund 2013,
Korenromp 2013, Larmarange 2014 [2, 6, 40–44].

Methodological article 8 (17.8)

Alkema 2008, Montana 2008, Kayibanda 2011 [45–47]. No missing data methods used in the
analysis

3 (6.7)

McGovern 2015a, Obare 2010, Pentanowitz 2009a [23, 33, 48]. Duplicate 3 (6.7)

Ng 2013 [49]. Could not assess the risk of bias 1 (2.2)

Fig. 1 A PRISMA flow diagram on the search and selection of studies process

Mosha et al. BMC Medical Research Methodology           (2020) 20:65 Page 4 of 10



describes the methods used to adjust for missing data on
estimating HIV prevalence.
Only 1 study mentioned the pattern identified of the

missing data, while more than half 13(53%) of the stud-
ies stated the mechanism assumed in the analysis. Of the
13 studies that mentioned the mechanism used during
analysis, all studies assumed data to be MCAR for the
complete analysis, 11 assumed data to be MNAR, ten as-
sumed data to be MAR and seven studies assumed both
MAR and MNAR. For the studies that used Multiple im-
putation method, only 3 (27%) stated the number of im-
puted data sets in the analysis, but seven (64%)
mentioned the variables used in the imputation model.
On assessing the robustness of the results only 6(25%)
studies conducted a sensitivity analysis, while 11(46%)
studies had a significant change of estimates after adjust-
ing for missing data. Table 6 provides details on the dif-
ferent aspects of the analysis strategy and methods.

Discussion
We identified 69 citations that fulfilled our eligibility cri-
teria on this HIV topic with only 24 studies addressing
the missing data problem on the estimation of HIV
prevalence during analysis. The same trend of fewer
studies addressing the missing data problem is observed
in other design like clinical trials and HIV longitudinal
studies measuring different outcome [72]. The major
reason for the missingness was reported to be a refusal
to consent for an HIV test, and with complete case ana-
lysis be the primary method of analysis used. Multiple
imputations and Heckman’s selection models were the
major methods used to adjust for missing data, with 46%
of studies showing a significant change of estimates after
adjustments. Only a quarter of the included studies con-
ducted a sensitivity analysis to assess the robustness of
the results.
There was a good agreement between authors regard-

ing the risk of bias, for all the included studies we had a
high risk of bias on the domains assessing the internal

validity of the studies compared to domains assessing
the external validity, i.e. on the likelihood of non-
participation. This may be because one criterion for the
inclusion to the review was the study should have a line
addressing the missing data or non-response problem.
The STROBE guideline [5] recommends that authors

to report the amount of missing data, methods of hand-
ling missing data and the reasons for missingness s.
However, of all included studies, only one was published
before the STROBE guidelines in 2007, while others
were published afterwards, and we found out that in
most of the included studies provided the amount of
missing data, with the corresponding reasons for miss-
ingness however, very few studies explored the differ-
ences between the participants with complete data and
with missing data which can be used as the bases of
examining the MCAR assumption.
The included studies used different methods for miss-

ing data analysis, and these ranged from ad hoc
(complete case and single imputation) to advanced
methods assuming MAR or MNAR mechanism (e.g.,
multiple imputations). Multiple imputations were the
common method used despite that in most of the stud-
ies the methodology behind it was not clearly explained
like the algorithm followed during imputation, number
of imputed dataset and details on the imputation model.
Provision of this information helps the replication of the
methods and assessment of the results.
We observe an increase of the HIV prevalence esti-

mates after adjusting for the missing data, demonstrating
the presence of downward bias if complete case analysis
is used The differences were significant in some studies
[58, 71], and this suggests there might be underestimat-
ing of HIV prevalence if missing data are ignored.
All the applied methods had the shortcoming of its ap-

plication considering the mechanism followed since
there is no proof that missing data were MAR or
MNAR. Heckman’s selection models and application of
instrumental variables where the methods tried to

Table 2 Description of included studies which used only one source of data

No Study ID Country Year of survey Year of publication Sample size Age of included participants Type of study

1 Floyd [61] Malawi 2006–2010 2013 17,000 ≥15 Cross-sectional survey

2 Harling [71] South Africa 2012 2017 42,357 ≥15 Population Survey

3 Jessens [62] Namibia 2008–2009 2014 1992 ≥12 Cross-sectional survey

4 Kendall [63] Angola 2011 2014 792 ≥18 Cross-sectional survey

5 Kerr [65] Brazil 2016 2018 4176 ≥18 Cross-sectional survey

6 Kerr [64] Brazil 2009 2013 3859 ≥18 Cross-sectional survey

7 Leacy [68] Zambia 2006–2010 2016 34,446 ≥18 Population survey

8 McGovern [69] South Africa 2009 2015 25,392 ≥15 Population survey

9 Reiners [52] Ethiopia 2003–2004 2009 1650 ≥16 Cross-sectional survey

10 Ziraba [66] Kenya 2006–2007 2010 4767 ≥15 Cross-sectional survey
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explore the deviation of MAR to the possibility of
MNAR assumption although a lack of suitable selection
or instrumental variable impacts their applicability [57,
71]. The use of doubly robust methods and extension of
Heckman’s selection models are the current methods
identified as suitable when data are assumed to be
MNAR. With the assumption that the missing data on
HIV prevalence studies not being MAR, and the possi-
bility of MNAR [54, 68], it is important to explore more
methods than identified from this review.
Further to the analysis, a report from National Re-

search Council (NRC) [73] explains the importance of
conducting sensitivity analysis to assess the robustness
of the results and conclusion of the assumptions used
on the application of methods used to adjust for missing
data. However, Only a quarter of the included studies
performed a sensitivity analysis…. This does not differ
with results provided by other reviews on missing dat,
that very few studies assessed the robustness of the re-
sults regardless of the design [74, 75].
This is the first systematic review exploring the

methods used in addressing the missing data problem
on estimating HIV prevalence, however these results can

only be generalizable to studies where the focus is on
missing data This review will guide us in future applica-
tion of these methods on real datasets from a
population-based study conducted in North-West
Tanzania and estimate the amount of bias caused by the
missing data. Also, we will extend the methods assuming
data being MNAR with further assessment by using a
sensitivity analysis approach.

Conclusion
This review aimed to look at surveys to determine what
analytical methods or technique have been used to ad-
dress the missing data problem on estimating HIV
prevalence. From the studies included we saw that sev-
eral methods can be used when data are not missing
completely at random,. However, studies often report
very little information on the steps, theories, assump-
tions and sensitivity of the reported results. .
All methods used for handling missing data in the in-

cluded studies produced different estimates from the
primary analysis, and in some studies, the difference was
large. These differences highlight the need for consider-
ing using more advance methods when facing the

Table 4 Summary of the missing data characteristics (n = 24)

CHARACTERISTICS n %

Response rate reported

Yes 21 88

No 3 22

Response rate reported

< 70% 2 9

70–80% 10 48

> 80% 9 43

Reasons for missing data reported

Yes 24 100

No 0 0

What were the reasons reported

Refusal to test for HIV 24 100

Absence 3 13

Technical problems 1 4.2

Type of missing data mentioned

Unit non-response 8 33

Unit and Item non-response 16 67

Missing data reported as a separate outcome

Yes 6 25

No 18 75

A summary table to compare participants with complete data vs
incomplete data

Yes 9 38

No 15 62

Table 5 Missing data methods used in the analysis

CHARACTERISTICS n %

Major methods used for analysis

Complete case analysis 24 100

Single imputation 2 8

Multiple Imputation 11 46

Instrumental variables 2 8

Heckman’s selection model 9 38

Other methods 13 54

Other methods used

Age standardization 2 8

Upper bounds and lower bounds 1 4

Copulae models 2 8

Logistic prediction models 1 4

Refusal rate adjustment 1 4

Mobility rate adjustment 1 4

Random effect bias model 1 4

HIV self-report imputation 1 4

Prevalence ratio inflation factor 1 4

HIV risk ratio adjustment 1 4

Network imputation using recruitment chain 1 4

Conditional probability equations 1 4

Maximum number of methods used per study

2 14 58

3 8 34

4 2 8
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problem of missing data in surveys and population stud-
ies to avoid producing biased results.
A further extension of this work is needed to compare

the effectiveness of the estimates, and the amount of bias
remaining from the available methods for dealing with
missing data. Awareness is an important aspect of ensur-
ing that these methods are applied appropriately, and
the right choices are made considering the reasons, pat-
terns and mechanism of the missing data..
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